Radiophotonic method for spectrum analysis of SHF-band signals based on stimulated Mandelstam-Brillouin scattering
DOI:
https://doi.org/10.1109/ICATT.2017.7972667Keywords:
microwave photonic, instantaneous frequency of the radio signal, stimulated Mandelstam-Brillouin scattering, frequency-amplitude transformation measurement, signal-to-noise ratioAbstract
In this article, we present the results of research of photonic systems for spectrum analysis of the SHF-band radio signals based on “frequency-amplitude” transformation in contours of amplification or absorption of stimulated Mandelstam-Brillouin scattering (SMBS) approximation in single-mode optical fiber. Using of such systems as a means of spectrum analysis of the SHF-band radio signals allows us to eliminate many of the shortcomings of similar systems.References
S. T. Winnall and A. C. Lindsay, “A Fabry-Perot scanning receiver for microwave signal processing,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 7, pp. 1385-1390, 1999. DOI: http://doi.org/10.1109/22.775483.
P. Rugeland, Z. Yu, C. Sterner, and O. Tarasenko, “Photonic scanning receiver using an electrically tuned fiber-Bragg grating,” Opt. Lett., vol. 34, no. 24, pp. 3794-3796, 2009. DOI: http://doi.org/10.1364/OL.34.003794.
C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photon. Technol. Lett., vol. 24, no. 7, pp. 614-616, 2012. DOI: http://doi.org/10.1109/LPT.2012.2185688.
S. Zheng, S. Ge and X. Zhang, “High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 24, no. 13, pp. 1115-1117, 2012. DOI: http://doi.org/10.1109/LPT.2012.2196035.
Y. Xiao, J. Guo, and K. Wu, “Multiple microwave frequencies measurement based on stimulated Brillouin scattering with improved measurement range,” Opt. Exp., vol. 21, no. 26, pp. 31740-31750, 2013. DOI: http://doi.org/10.1364/OE.21.031740.
L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett., vol. 21, no. 10, pp. 642-644, 2009. DOI: http://doi.org/10.1109/LPT.2009.2015890.
O. G. Morozov, A. A. Talipov, and G. A. Morozov, “Principles of multiple frequencies characterization of stimulated Mandelstam-Brillouin gain spectrum,” Proc. SPIE, vol. 9156, 91560K, 2014. DOI: http://doi.org/10.1117/12.2054253.
O. G. Morozov, A. A. Talipov, G. A. Morozov, and V. G. Kupriyanov, “Characterization of stimulated Mandelstam-Brillouin scattering spectrum using a double-frequency probing radiation,” Proc. SPIE, vol. 8787, 878709, 2013. DOI: http://doi.org/10.1117/12.2017835.
O. G. Morozov, G. A. Morozov, I. I. Nureev, D. I. Kasimova, M. Y. Zastela, P. V. Gavrilov, I. A. Makarov, V. A. Purtov, “Optical vector network analyzer based on amplitude-phase modulation,” Proc. SPIE, vol. 9807, 980717, 2016. DOI: http://doi.org/10.1117/12.2232993.
G. I. Il'In, O. G. Morozov, and A. G. Il'In, “Theory of symmetrical two-frequency signals and key aspects of its application,” Proc. SPIE, vol. 9156, 91560M, 2014. DOI: http://doi.org/10.1117/12.2054753.
O. G. Morozov, O. G. Natanson, D. L. Aybatov, V. P. Prosvirin, A. A. Talipov, “Methodology of symmetric double frequency reflectometry for selective fiber optic structures,” Proc. SPIE, vol. 7026, 70260I, 2008. DOI: http://doi.org/10.1117/12.801506.
O. G. Morozov, O. G. Natanson, D. L. Aybatov, A. A. Talipov, V. P. Prosvirin, A. S. Smirnov, “Metrological aspects of symmetric double frequency and multi frequency reflectometry for fiber Bragg structures,” Proc. SPIE, vol. 7026, 70260J, 2008. DOI: http://doi.org/10.1117/12.801507.
O. G. Morozov, D. L. Aibatov, “Two-frequency scanning of FBG with arbitrary reflection spectrum,” Proc. SPIE, vol. 6605, 660506, 2007. DOI: http://doi.org/10.1117/12.728450.
D. L. Aybatov, O. G. Morozov, and T. S. Sadeev, “Dual port MZM based optical comb generator for all-optical microwave photonic devices,” Proc. SPIE, vol. 7992, 799202, 2011. DOI: http://doi.org/10.1117/12.887273.
O. G. Morozov and D. L. Aybatov, “Spectrum conversion investigation in lithium niobate Mach-Zehnder modulator,” Proc. SPIE, vol. 7523, 75230D, 2010. DOI: http://doi.org/10.1117/12.854957.
O. G. Morozov, A. A. Talipov, M. R. Nurgazizov, T. S. Sadeev, A. G. Fedorov, “Instantaneous frequency measurement using double-frequency probing,” Proc. SPIE, vol. 8787, 878708, 2013. DOI: http://doi.org/10.1117/12.2017834.
O. G. Morozov, A. A. Talipov, M. R. Nurgazizov, P. E. Denisenko, A. A. Vasilets, “Instantaneous frequency measurement of microwave signals in optical range using ‘frequency-amplitude’ conversion in the π-phase-shifted fiber-Bragg grating,” Proc. SPIE, vol. 9136, 91361B, 2014. DOI: http://doi.org/10.1117/12.2051126.
O. G. Morozov, A. A. Talipov, M. R. Nurgazizov, A. A. Vasilets, “Instantaneous microwave frequency measurement with monitoring of system temperature,” Proc. SPIE, vol. 9156, 91560N, 2014. DOI: http://doi.org/10.1117/12.2054256.
A. V. Bourdine, “Fiber Bragg grating writing technique for multimode optical fibers providing stimulation of few-mode effects in measurement systems,” Proc. SPIE, vol. 9807, 98070J, 2016. DOI: http://doi.org/10.1117/12.2234565.
A. M. Kafarova, L. M. Faskhutdinov, A. A. Kuznetzov, A. Y. Minaeva, N. L. Sevruk, I. I. Nureev, A. A. Vasilets, A. V. Bourdine, O. G. Morozov, V. A. Burdin, “Quasi-interferometric scheme improved by fiber Bragg grating for detection of outer mechanical stress influence on distributed sensor being silica multimode optical fiber operating in a fewmode regime,” Proc. SPIE, vol. 9807, 98070K, 2016. DOI: http://doi.org/10.1117/12.2234567.
A. M. Kafarova, L. M. Faskhutdinov, A. A. Kuznetzov, A. Y. Minaeva, N. L. Sevruk, I. I. Nureev, A. A. Vasilets, A. V. Bourdine, O. G. Morozov, V. A. Burdin, “Experimental researches of fiber Bragg gratings operating in a few-mode regime,” Proc. SPIE, vol. 9807, 98070L, 2016. DOI: http://doi.org/10.1117/12.2235790.
A. K. Sultanov, I. L. Vinogradova, I. K. Meshkov, E. P. Grakhova, S. P. Shmidt, G. I. Abdrakhmanova, I. T. Monroy, “IR-UWB radio-over-fiber system components development,” Proc. SPIE, vol. 9807, 980708, 2016. DOI: http://doi.org/10.1117/12.2234422.