Investigation of 3D printed dielectric structure for microwave lens prototyping
DOI:
https://doi.org/10.1109/ICATT.2017.7972647Keywords:
dielectric constant, microwave measurement, microwave propagation, microwave materialsAbstract
In this work, we designed and fabricated dielectric materials with predetermined dielectric permittivity. These materials are 3-D printed using fused deposition modeling technique with high impact polystyrene filament. The dielectric structure is composed of discrete layers that are separated into cells. Each unit cell is essentially a plastic cube with square air void in the center. Desired variable relative permittivity was realized by changing the filling ratio. The dependences of relative permittivity on filling ratio are measured and presented. Obtained approximated dependence of relative permittivity can be utilized for microwave lens synthesis for low-cost communication systems.References
X. Chen, Y. Ge, and T. S. Bird, “Reduction of sidelobe radiations of the standard pyramidal horn using a thin metamaterial lens”, Electron. Lett., vol. 52, no. 24, pp. 1973-1974, 2016. DOI: http://doi.org/10.1049/el.2016.3336.
D. Ramaccia, F. Scattone, F. Bilotti, and A. Toscano, “Broadband compact horn antennas by using EPS-ENZ metamaterial lens,” IEEE Trans. Antennas Propag., vol. 61, no. 6, pp. 2929-2937, June 2013. DOI: http://doi.org/10.1109/TAP.2013.2250235.
C. Y. Tan and K. T. Selvan, “A performance comparison of a Ku-band conical horn with an inserted cone-sphere with horns with an integrated dielectric lens and metamaterial loading,” IEEE Antennas Propag. Mag., vol. 53, no. 5, pp. 115-122, May 2011. DOI: http://doi.org/10.1109/MAP.2011.6138438.
H. B. Molina and J. Hesselbarth, “Microwave dielectric stepped-index flat lens antenna,” Int. J. Microwave Wireless Technol., vol. 9, no. 5, p. 1103-1109, Oct. 2016. DOI: http://doi.org/10.1017/S1759078716001124.
J. Bor, O. Lafond, H. Merlet, P. Le Bars, and M. Himdi, “Technological process to control the foam dielectric constant application to microwave components and antennas,” IEEE Trans. Compon. Packag. Manufact. Technol., vol. 4, no. 5, pp. 938-942, May 2014. DOI: http://doi.org/10.1109/TCPMT.2013.2294871.
M. Liang, W.-R. Ng, K. Chang, K. Gbele, Michael E. Gehm, and H. Xin, “A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping,” IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1799-1807, Apr. 2014. DOI: http://doi.org/10.1109/TAP.2013.2297165.
G. Gruner, Millimeter and Submillimeter Wave Spectroscopy of Solids. Berlin: Springer, 1998.
K. C. Gupta, R. Garg and R. Chadha, Computer Aided Design of Microwave Circuits. Artech House, Mass., 1981.
K. Lichtenecker and K. Rother, “Die Herleitung des logarithmischen Mischungs-gesetzes aus allegemeinen Prinzipien der stationaren Stromung,” Phys. Zeitschr., vol. XXXII, pp. 255-260, 1931.
M. Liang, X. Yu, R. Sabory-García,W.-R. Ng, M. E. Gehm, and H. Xin, “Broadband electronically beam scanning structure using Luneburg lens,” IEEE MTT-S Int. Microwave Symp. Dig., 2-7 Jun. 2013, Seattle, WA, USA. IEEE, 2013. DOI: http://doi.org/10.1109/MWSYM.2013.6697494.