Active antenna with switchable beams for wireless sensor networks and IoT


  • J. M. Rigelsford University of Sheffield, United Kingdom
  • H. Hussein University of Sheffield, United Kingdom
  • Radhwan J. Alkhudhairi University of Sheffield, United Kingdom



antenna, microcell, heterogeneous network, IoT


An active antenna capable of changing the beamwidth and pointing direction of its main radiating beam is presented. The design exploits the use of a novel frequency selective surface (FSS) and variable capacitance diodes (varactors) to control the main beam of an antenna. The main beam azimuthal pointing direction can be steered ±18° from boresight and the −3dB beamwidth varied from 100° to 140°. Narrower beamwidths can be achieved by changing the size and shape of the active ground plane. The design is suitable for applications where even small changes to the antenna parameters (gain, beamwidth and pointing direction) can have a positive impact on coverage and performance. Operating within the 2.4GHz ISM band, the proposed antenna design is suitable for adaptive indoor WiFi networks, dynamic wireless sensor networks and the internet of things.


J. Dong, Y. Li, B. Zhang, and Ieee, “A survey on radiation pattern reconfigurable antennas,” Proc. of 7th Int. Conf. on Wireless Communications, Networking and Mobile Computing, WiCOM, 23-25 Sept. 2011, Wuhan, China. IEEE, 2011. DOI:

Liu Xiaozhi, Li Xiang, Han Ying, “An improved adaptive beamforming algorithm based on TD-SCDMA system,” Proc. of Int. Conf. on Electronics and Optoelectronics, ICEOE, 29-31 Jul. 2011, Dalian. IEEE, 2011, vol. 2, pp. V2-44,V2-47. DOI:

Weisi Guo, Siyi Wang, Yue Wu, J. Rigelsford, Xiaoli Chu, T. O'Farrell, “Spectral- and energy-efficient antenna tilting in a HetNet using reinforcement learning,” Proc. of Wireless Communications and Networking Conf., WCNC, 7-10 Apr. 2013, Shanghai, China. IEEE, 2013, pp. 767-772. DOI:

M. Benedetti, G. Oliveri, P. Rocca, and A. Massa, “A fully adaptive smart antenna prototype: Ideal model and experimental validation in complex interference scenarios,” PIER, Vol. 96, p. 173-191, 2009. DOI:

Hubregt J. Visser, Array and Phased Array Antenna Basics. John Wiley & Sons, 2006.

Y. Wang, A. Tennant, “Experimental time-modulated reflector array,” IEEE Trans. Antennas Propag., Vol. 62, no. 12, pp. 6533-6536, 2014. DOI:

M. Andersson, B. Goransson, I. Skarin, K. From, S. Cheng, E. Ojefors, P. Hallbjorner, L. Manholm, A. Rydberg, “Antennas with fast beam steering for high spectral efficiency in broadband cellular systems,” Proc. of 9th Eur. Conf. on Wireless Technology, 10-12 Sept. 2006, Manchester, UK. IEEE, 2006, pp. 12-15. DOI:

3GPP, “TS 25.463: UTRAN iuant interface: Remote electrical tilting (RET) antennas application part (RETAP) signalling (Release 6),” 3GPP, Technical Report, Dec. 2007.

Y. Ushijima, E. Nishiyama, M. Aikawa, “Dual-polarized microstrip array antenna with orthogonal feed circuit,” Proc. of Int. Symp. on Antennas and Propagation, APSURSI, 3-8 Jul. 2011, Spokane, WA, USA. IEEE, 2011, pp. 561-564. DOI:

H. Boutayeb, T. A. Denidni, K. Mahdjoubi, A.-C. Tarot, A. Sebak, L. Talbi, “Analysis and design of a cylindrical EBG-based directive antenna,” IEEE Trans. Antennas Propag., vol. 54, no. 1, pp. 211-219, Jan. 2006. DOI:

M. S. Mohamad Isa, R. J. Langley, S. Khamas, “Antenna control using EBG,” Proc. of 5th European Conf. on Antennas and Propagation, EUCAP, 11-15 Apr. 2011, Rome, Italy. IEEE, 2011, pp. 216-219. URL:

A. Edalati and T. A. Denidni, “Frequency selective surfaces for beam- switching applications,” IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 195-200, Jan. 2013. DOI:

J. M. Rigelsford, F. Collado, K. L. Ford, “Radiation steering of a low profile street furniture antenna using an active AMC,” Proc. of Loughborough Antennas and Propagation Conf., LAPC, 8-9 Nov. 2010, Loughborough, UK. IEEE, 2010, pp. 529-532. DOI:

K. L. Ford, J. M. Rigelsford, “Antenna radiation pattern control using EBG/AMC surfaces for street furniture applications,” Proc. of Antennas and Propagation Society Int. Symp., 9-15 Jun. 2007, Honolulu, HI, USA. IEEE, 2007, pp. 4076-4079. DOI:

I. Martin, T. O’Farrell, R. Aspey, S. Edwards, T. James, P. Loskot, T. Murray, I. Rutt, N. Selmes, T. Baugé, “A high-resolution sensor network for monitoring glacier dynamics,” IEEE Sensors J., vol. 14, no. 11, pp. 3926-3931, Aug. 2014. DOI:

SMV1231 datasheet.

CST Microwave Studio,





UWB, low-gain, communication and printed antennas