Frequency and pattern reconfigurable antenna array based on liquid crystal technology
DOI:
https://doi.org/10.1109/ICATT.2017.7972606Keywords:
liquid crystals, reconfigurable, frequency-agile, beam scanningAbstract
A reconfigurable antenna array based on liquid crystal (LC) technology is proposed, which can dynamically tune operation frequency and achieve beam steering. The antenna element is mainly composed of two parts: a microstrip series patch array and an inverted microstrip line (IMSL) phase shifter. The LC substrate is used to support the patch array for controlling its resonance frequency, while the LC-based IMSL phase shifter is adopted to tune the transmission phase by changing the effective permittivity of the LC through a DC bias voltage. In order to verify the reconfigurable characteristics of the antenna, the antenna array consisting of 1×4 elements are designed and numerically investigated. Simulation results show that this antenna can realize beam steering with a scanning angle range of (-20°, 20°), while its operation frequency can be actively tuned between 14.5 GHz and 16.4 GHz. The proposed antenna configuration is a promising candidate, which has potential application in communication fields.References
T. Jiang, Z. Y. Wang, D. Li, J. N. Pan, B. Zhang, Jiangtao Huangfu, Yannick Salamin, Changzhi Li, and Lixin Ran, “Low-DC voltage-controlled steering-antenna radome utilizing tunable active metamaterial,” IEEE Trans. Microwave Theory Tech., Vol. 60, No. 1, p. 170-178, 2012. DOI: https://doi.org/10.1109/TMTT.2011.2171981.
W. B. Pan, C. Huang, P. Chen, M. B. Pu, X. L. Ma, and X. G. Luo, “A beam steering horn antenna using active frequency selective surface,” IEEE Trans. Antennas Propag., Vol. 61, No. 12, p. 6218-6223, 2013. DOI: https://doi.org/10.1109/TAP.2013.2280592.
I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange anisotropy,” in Magnetism, Vol. III [ed. by G. T. Rado and H. Suhl]. New York: Academic, 1963, pp. 271-350.
J. Y. Lau and S. V. Hum, “A wideband reconfigurable transmitarray element,” IEEE Trans. Antennas Propag., Vol. 60, No. 3, pp. 1303-1311, 2012. DOI: https://doi.org/10.1109/TAP.2011.2180475.
A. F. Sheta and S. F. Mahmoud, “A widely tunable compact patch antenna,” IEEE Antennas Wireless Propag. Lett., Vol. 7, pp. 40-42, 2008. DOI: https://doi.org/10.1109/LAWP.2008.915796.
E. Erdil, K. Topalli, M. Unlu, O. A. Civi, and T. Akin, “Frequency tunable microstrip patch antenna using RF MEMS technology,” IEEE Trans. Antennas Propag., Vol. 55, No. 4, p. 1193-1196, Apr. 2007. DOI: https://doi.org/10.1109/TAP.2007.893426.
V. G. Kononov, C. A. Balanis, A. C. Polycarpou, and C. R. Birtcher, “Non-uniform field modeling of ferrite-loaded cavity-backed slot antennas,” Proc. of Antennas and Propag. Soc. Int. Symp., 5-11 Jul. 2008, San Diego, CA, USA. IEEE, 2008. DOI: https://doi.org/10.1109/APS.2008.4619622.
Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express, Vol. 21, No. 11, p. 13691-13698, 2013. DOI: https://doi.org/10.1364/OE.21.013691.
Yiguo Chen, Xiong Li, Yannick Sonnefraud, Antonio I. Fernández-Domínguez, Xiangang Luo, Minghui Hong & Stefan A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep., Vol. 5, p. 8660, 2015. DOI: http://doi.org/10.1038/srep08660.
Dacheng Wang, Lingchao Zhang, Yinghong Gu, M. Q. Mehmood, Yandong Gong, Amar Srivastava, Linke Jian, T. Venkatesan, Cheng-Wei Qiu & Minghui Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep., Vol. 5, p. 15020, 2015. DOI: http://doi.org/10.1038/srep15020.
R. Bose and A. Sinha, “Tunable patch antenna using a liquid crystal substrate,” Proc. IEEE Radar Conf., 26-30 May 2008, Rome, Italy. IEEE, 2008, p. 1-6. DOI: https://doi.org/10.1109/RADAR.2008.4720856.
N. Martin, P. Laurent, C. Person, P. Gelin, and F. Huret, “Patch antenna adjustable in frequency using liquid crystal,” Proc. of 33rd Eur. Microwave Conf., 7 Oct. 2003, Munich, Germany. IEEE, 2003, Vol. 3, p. 1417-1420. DOI: https://doi.org/10.1109/EUMC.2003.177573.
F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett., Vol. 45, No. 13, p. 686-687, 2009. DOI: https://doi.org/10.1049/el.2009.1168.
O. H. Karabey, A. Gaebler, S. Strunck, and R. Jakoby, “A 2-D electronically steered phased-array antenna with 2x2 elements in LC display technology,” IEEE Trans. Microw. Theory Tech., Vol. 60, No. 5, pp. 1297-1306, May 2012. DOI: https://doi.org/10.1109/TMTT.2012.2187919.
A. C. Polycarpou, M. A. Christou, and N. C. Papanicolaou, “Tunable patch antenna printed on a biased nematic liquid crystal cell,” IEEE Trans. Antennas Propag., Vol. 62, No. 10, p. 4980-4987, Oct. 2014. DOI: https://doi.org/10.1109/TAP.2014.2344099.
O. H. Karabey, A. Mehmood, M. Ayluctarhan, H. Braun, M. Letz, and R. Jakoby, “Liquid crystal based phased array antenna with improved beam scanning capability,” Electron. Lett., Vol. 50, No. 6, p. 426-428, 2014. DOI: https://doi.org/10.1049/el.2014.0269.
G. Perez-Palomino, M. Barba, J. A. Encinar, R. Cahill, R. Dickie, P. Baine, and M. Bain, “Design and demonstration of an electronically scanned reflectarray antenna at 100 GHz using multiresonant cells based on liquid crystals,” IEEE Trans. Antennas Propag., Vol. 63, No. 8, p. 3722-3727, Aug. 2015. DOI: https://doi.org/10.1109/TAP.2015.2434421.