Radome integrated slotted waveguide antennas


  • S. S. Sekretarov Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Ukraine
  • Dmitry M. Vavriv Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Ukraine




slotted waveguide antennas, antenna radomes, antenna production technologies


The development of slotted waveguide antennas with an integrated radome is discussed. The integrated radome is intended to improve the resistance of slotted-waveguide antennas against complex environmental conditions and to extend application areas of the antennas. Efficient approaches to the design, simulation, and fabrication of such antennas are considered. The development of a single plane monopulse Ku-band circular array is presented as an example of the implementations of such approaches. The antenna test results are presented to verify the design, simulation, and manufacturing solutions proposed.


R. S. Elliott, Antenna Theory and Design, rev. ed. John Wiley & Sons, 2003.

Sembiam R. Rengarajan, Lars G. Josefsson, Robert S. Elliot, “Waveguide-fed slot antennas and arrays: a review,” Electromagnetics, vol. 19, no. 1, pp. 3-22, 1999. DOI: http://doi.org/10.1080/02726349908908622.

S. S. Sekretarov, A. V. Somov, and D. M. Vavriv, “Time-effective and accurate synthesis of large-aperture slotted waveguide antennas,” Proc. of 6th European Conf. on Antennas and Propagation, 26-30 Mar. 2012, Prague, Czech Republic. IEEE, 2012, pp. 1036-1040. DOI: http://doi.org/10.1109/EuCAP.2012.6206258.

S. S. Sekretarov and D. M. Vavriv, “Circular slotted antenna array with inclined beam for airborne radar applications,” Proc. of German Microwave Conf., 10-12 Mar. 2008, Hamburg-Harburg, Germany. VDE, 2008, pp. 475-478. URL: http://ieeexplore.ieee.org/document/5756963/.

Pisti B. Katehi, “Dielectric-covered waveguide longitudinal slots with finite wall thickness,” IEEE Trans. Antennas Propag., vol. 38, No. 7, pp. 1039-1045, 1990. DOI: http://doi.org/10.1109/8.55615.

Marion C. Bailey, “The impedance properties of dielectric-covered narrow radiating slots in the broad face of a rectangular waveguide,” IEEE Trans. Antennas Propag., vol. 18, No. 5, pp. 596-603, 1970. DOI: http://doi.org/10.1109/TAP.1970.1139761.

G. A. Casula and G. Montisci, “Design of dielectric-covered planar arrays of longitudinal slots,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 752-755, 2009. DOI: http://doi.org/10.1109/LAWP.2009.2021963.

G. Mazzarella, G. Montisci, “A rigorous analysis of dielectric-covered narrow longitudinal shunt slots with finite wall thickness,” Electromagnetics, vol. 19, no. 5, p. 407-418, 1999. DOI: http://doi.org/10.1080/02726349908908660.

Zusheng Jin, G. Montisci, G. Casula, Hu Yang, and Junqi Lu, “Efficient evaluation of the external mutual coupling in dielectric-covered waveguide slot arrays,” Int. J. Antennas Propag., vol. 2012, Article ID 491242, 2012. DOI: http://doi.org/10.1155/2012/491242.

Li-Ming Si, Yong Liu, Yongjun Huang, and Weiren Zhu, “Ka-band slot-microstrip-covered and waveguide-cavity-backed monopulse antenna array,” Int. J. Antennas Propag., vol. 2014, Article ID 707491, 2014. DOI: http://doi.org/10.1155/2014/707491.

G. Stern and R. Elliot, “Resonant length of longitudinal slots and validity of circuit representation: Theory and experiment,” IEEE Trans. Antennas Propag., vol. 33, No. 11, pp. 1264-1271, 1985. DOI: http://doi.org/10.1109/TAP.1985.1143509.

Microwave Electronics Department of IRA NASU, http://www.radar.kharov.com.