Millimeter-range radiometric system for perspective problems of meteorology and telecommunication


  • Vladimir V. Pavlikov National Aerospace University (KhAI), Ukraine
  • N. V. Ruzhentsev National Aerospace University “Kharkiv Aviation Institute”, Ukraine
  • A. D. Sobkolov National Aerospace University “Kharkiv Aviation Institute”, Ukraine
  • A. I. Tsopa Kharkiv National University of Radioelectronics, Ukraine
  • D. S. Sal’nikov Kharkiv National University of Radio Electronics, Ukraine



radiometric complex, atmosphere research, millimeter wave range, vertical signal attenuation


Short description of new ground radiometric complex, working on 40 GHz and 94 GHz frequencies and providing remote continuous measurements of full vertical atmosphere attenuation, effective temperature values and liquidwater content of clouds, integral content of vaporous moisture in atmosphere. The feature of the complex is the availability of digital signal processing of detected signals mode.


B. G. Kutuza, M. V. Danilychev, and O. I. Yakovlev, Satellite Earth Monitoring: Microwave Radiometry of Atmosphere and Surface [in Russian]. Moscow: URSS, 2015. 233 p.

A. V. Antonov, V. P. Churilov, Y. M. Gerasimov, Y. V. Karelin, and N. V. Ruzhentsev, “Observations of local sources of the Sun activity at 94 GHz with the radiotelescope RT-2,” Proc. of Fourth Int. Kharkov Symp. on Physics and Engineering of Millimeter and Sub-Millimeter Waves, 4-9 Jun. 2001, Kharkov, Ukraine. IEEE, 2001, vol. 2, pp. 798-800. DOI:

A. I. Tsopa, V. K. Ivanov, V. I. Leonidov, Yu. I. Maleshenko, V. V. Pavlikov, N. V. Ruzhentsev, and A. A. Zarudniy, “The research program of millimetric radio waves attenuation characteristics on perspective communication lines of Ukraine,” Proc. of XIII-th Int. Conf. on Modern Problems of Radio Engineering, Telecommunications and Computer Science, TCSET, 23-26 Feb. 2016, Lviv-Slavsko, Ukraine. IEEE, 2016, рp. 638-642. DOI:

V. I. Leonidov, N. V. Ruzhentsev, A. I. Tsopa, A. A. Zarudniy, V. V. Pavlikov, V. K. Ivanov, Yu. I. Maleshenko, “The project of joint investigations of millimetre waves propagations for Ukrainian advanced 5G communication lines,” Proc. of IX Int. Kharkiv Symp. on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, MSMW, 20-24 Jun. 2016, Kharkiv, Ukraine. IEEE, 2016. DOI:

S. Salous, V. D. Esposti, F. Fuschini, R. S. Thomae, R. Mueller, D. Dupleich, K. Haneda, J.-M. M. Garcia-Pardo, J. P. Garcia, D. P. Gaillot, S. Hur, M. Nekovee, “Millimeter-wave propagation: characterization and modeling toward fifth-generation systems. [Wireless Corner],” IEEE Antennas Propag. Mag., vol. 58, no. 6, pp. 115-127, Dec. 2016. DOI:

Recommendation ITU-R P.530-12 Propagation data and prediction methods required for the design of terrestrial line-of-sight systems.

A. K. Blinov, V. V. Boiko, D. V. Kashkaryev, at al., “Radiometer at 7 mm diapazon with quantum amplifier,” Preprint #14, Radio Astronomy Institute of the USSR Academy of Sciences, Kharkiv, 1988, 46 p. [in Russian].

N. V. Ruzhentsev, “Complex research of parameters of radiation of axisymmetrical antennas with small aperture at millimeter waves band,” Proc. of Int. Kharkiv Symp. on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, MSMW, June 2016, 4 р.

N. A. Yesepkina, D. V. Korol'kov, and Yu. N. Pariyskii, Radiotelescopes and Passive Radars [in Russian]. Moscow: Nauka, 1973. 416 p.

N. V. Ruzhentsev, “Radiometer without diplexer,” Proc. of 21thConf. on Radio Astronomical Equipment, Yerevan, Oct. 1989, pp. 45-46.

N. V. Ruzhentsev, “Compact 3 mm wave band transceivers for technologucal radars and radiotelephone communication systems,” Turkish J. Phys., vol. 20, no. 4, pp. 356-358, 1996.

A. S. Kokosov, V. G. Yelenskiy, “Generator harmonics millimeter-wave-based Gunn diodes,” Zarubezhnaya Radioelectronica, no. 2, pp. 54-65, 1987.

H. Barth, “A wideband backshort – fennable second harmonic Gunn oscillator,” IEEE MTT-S Join Int. Microwave Simp. Dig., p. 334-337, 1981.

V. I. Piddiachii and S. A. Peskovatskii, “A broad-band low-noise Schotky diode full-height waveguide mixer from 80 to 115 GHz,” Int. J. Infrared Millimeter Waves, vol. 25, no. 1, pp. 43-54, 2003. DOI:

V. V. Pavlikov, S. S. Zhyla, and O. V. Odokienko, “Structural optimization of Dicke-type radiometer,” Proc. of Int. Young Sci. Forum on Applied Physics and Engineering, 12-14 Oct. 2016. Kharkiv, Ukraine. IEEE, 2016. DOI:

V. V. Pavlikov, S. S. Zhyla, A. V. Odokienko, and M. O. Antonov, “Radiometer with signal energies ratio,” IEEE Radar Methods and Systems Workshop, RMSW, 27-28 Sept. 2016, Kiev, Ukraine. IEEE, 2016, pp. 99-102. DOI:

V. V. Pavlikov and A. D. Sobkolov, “The new type of chopper radiometer,” Proc. of 8th Int. Conf. on Ultrawideband and Ultrashort Impulse Signals, UWBUSIS, 5-11 Sept. 2016, Odesa, Ukraine. IEEE, 2016, pp. 205-208. DOI:

N. V. Ruzhentsev and Yu. A. Kuzmenko, “Flare angle changes antenna of the millimeter wave band,” Int. J. Infrared Millimeter Waves, vol. 17, no. 4, pp. 779-784, 1996. DOI:

N. V. Ruzhentsev, “Peculiarities of vertical atmosphere absorption in the millimeter wave band,” Radio Science, vol. 38, no. 3, 8043, 2003. DOI:

N. V. Ruzhentsev, Vertical Atmospheric Attenuation of Radio Waves of Millimeter Range [in Russian]. Germany: LAMBERT Academic Publishing, 2015.

H. J. Liebe, “MPM—An atmospheric millimeter waves propagation model,” Int. J. Infrared Millimeter Waves, vol. 10, no. 6, pp. 631-650, 1989. DOI:

V. D. Stepanenko, G. G. Shchukin, L. P. Bobyl’ov, and S. Yu. Matrosov, Radar in Meteorology [in Russian]. Leningrad: Gidrometizdat, 1987.

A. M. Osharin and A. V. Troitsky, “Polarization of the thermal radiation of the cloudy atmosphere in millimeter wavelength band,” Proc. of Int. Conf. on Mathematical Methods in Electromagnetic Theory, 12-15 Sept. 2000, Kharkov, Ukraine. IEEE, 2000, vol. 1, pp. 244-246. DOI: