Tuning range of microwave devices with micromechanical control





microwave, tuning, micromechanical


The paper presents generalization of micromechanical control principle for number of microwave devices, such as tunable phase shifters and resonator based filters. Starting with one dimensional dielectric discontinuity model, control principle is propagated to microstrip line devices and dielectric resonators. Maximum possible tuning range is discussed along with accompanying insertion loss.


R. R. Mansour, F. Huang, S. Fouladi, Winter Dong Yan, Mitra Nasr, “High-Q tunable filters: challenges and potential,” IEEE Microwave Mag., vol. 15, no. 5, pp. 70-82, 2014. DOI: http://doi.org/10.1109/MMM.2014.2321101.

Y. Prokopenko, Y. Poplavko, N. Ruda, “Dielectric-air structure as a component of electromechanically controlled microwave devices,” Proc. of 2010 Int. Conf. on Mathematical Methods in Electromagnetic Theory, 6-8 Sept. 2010, Kyiv, Ukraine. IEEE, 2010, pp. 1-4. DOI: http://doi.org/10.1109/MMET.2010.5611404.

Yu. V. Prokopenko, Yu. M. Poplavko, V. I. Molchanov, “Electromechanically tunable dielectric microwave devices,” Inf. Telecommunication Sciences, vol. 1, no. 1, pp. 57-64, Jul. 2010. URL: http://infotelesc.kpi.ua/article/view/30006.

Yu. V. Prokopenko, “Controllability range of dielectric inhomogeneity located between the metal planes,” Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, no. 6, pp. 16-20, Nov. 2012. URL: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/51719/04-Prokopenko.pdf.

Y. M. Poplavko, I. P. Golubeva, Y. V. Prokopenko, “MEMS-like phase shifter with piezoelectric control,” Proc. of Int. Conf. on Microwaves, Radar & Wireless Communications, MIKON, 22-24 May 2006, Krakow, Poland. IEEE, 2006, pp. 317-319. DOI: http://doi.org/10.1109/MIKON.2006.4345179.

Y. Poplavko, Y. Prokopenko, V. Pashkov, V. Molchanov, I. Golubeva, V. Kazmirenko, D. Smigin, “Low loss microwave piezo-tunable devices,” Proc. of 36th European Microwave Conf., 10-15 Sept. 2006, Manchester, UK. IEEE, pp. 657-660. DOI: http://doi.org/10.1109/EUMC.2006.281496.

P. Y. Serhienko, Yu. V. Prokopenko, Yu. M. Poplavko, “Microwave microstrip resonators tuning without quality factor deterioration,” Visn. NTUU KPI, Ser. Radioteh. Radioaparatobuduv., no. 56, pp. 75-87, 2014.

P. Y. Serhiienko, V. A. Kazmirenko, A. S. Chernov, Y. V. Prokopenko, “Q-factor of tuned microstrip resonator,” Radioelectron. Commun. Syst., vol. 59, no. 2, pp. 89-95, 2016. DOI: http://doi.org/10.3103/S0735272716020060.

K. C. Gupta, R. Garg, I. Bahl, P. Bhartia, Microstrip Lines and Slotlines, 2nd ed. Artech House, 1996, 535 p.

P. Sergienko, I. Golubeva, Yu. Prokopenko, “Loss in tunable microstrip lines,” Proc. of 2014 IEEE 34th Int. Sci. Conf. on Electronics and Nanotechnology, 15-18 Apr. 2014, Kyiv, Ukraine. IEEE, 2014, pp. 97-100. DOI: http://doi.org/10.1109/ELNANO.2014.6873972.

B. Pratsiuk, D. Tkachov, Y. Prokopenko, Y. Poplavko, “Tunable dielectric resonator: Design and parameters,” Proc. of Crimean Conf. on Microwave and Telecommunication Technology, CriMiCo-2010, Sept. 2010, Sevastopol, Ukraine. IEEE, 2010, pp. 655-656. DOI: http://doi.org/10.1109/CRMICO.2010.5632671.

K. G. Savin, I. P. Golubeva, Yu. V. Prokopenko, “Calculation of frequency and power characteristics of the composite metal-dielectric resonator using the method of partial regions,” Radioelectron. Commun. Syst., vol. 59, no. 5, p. 229-236, 2016. DOI: http://doi.org/10.3103/S0735272716050058.

Y. Kobayashi, S. Tanaka, “Resonant modes of a dielectric rod resonator short-circuited at both ends by parallel conducting plates,” IEEE Trans. Microwave Theory Tech., vol. 28, no. 10, p. 1077-1085, Oct. 1980. DOI: http://doi.org/10.1109/TMTT.1980.1130228.