Substrate application of magnetic metamaterial

Authors

  • Oleg N. Rybin Kharkiv National University of Radioelectronics, Ukraine
  • Sergey N. Shulga Kharkiv National University, Ukraine

DOI:

https://doi.org/10.1109/ICATT.2015.7136879

Keywords:

metamaterials, patch antennas, microwave technology, substrates

Abstract

The main relations for designing a metamaterial rectangular patch antenna with a magnetically enhanced substrate are obtained. It is supposed that the substrate is to be fabricated of metamaterial with a large value in the real part of the effective permeability instead of a conventional homogenous high dielectric or magnetic material. It results in antenna miniaturization. The specific type of metamaterial that can be used as a substrate is suggested.

References

BOUBAKRI, A.; BEL HADJ, TAHAR J. Optimization of a Patch Antenna Performances Using a Left Handed Metamaterial. Proc. of 29th Int. Symp. on Progress in Electromagnetics Research, 2011, p.419-421.

LOU, R. KHAJEH MOHAMMAD; ARIBI, T.; GHOBADI, C. Improvement of Characteristics of Microstrip Antenna Using of Metamaterial Super-strate. Proc. of 1st Int. Conf. on Communication Engineering, 2011, p.126-129.

WU, BAE-IAN; WANG, WEIJEN; PACHECO, JOE; CHEN, XUDONG; LU, JIE; GRZEGORCZYK, TOMASZ M.; KONG, JIN AU; KAO, PETER; THEOPHELAKES, PAUL A.; HOGAN, MICHAEL J. Anisotropic Metamaterials as Antenna Substrate to Enhance Directivity. Microwave and Technology Letters, 2006, v.48, p.680-683.

MAHDY, M.R.C.; ZUBORAJ, M.R.A.; OVI, A.A.N.; MATIN, M.A. A Novel Design Algorithm and Practical Realization of Rectangular Patch Antenna Loaded With SNG Metamaterial. Progress In Electromagnetics Research M, 2011, v.17, p.13-27, doi: http://dx.doi.org/10.2528/PIERM10112006.

HANSEN, R.C. Electrically Small, Superdi-rective, and Superconducting Antennas. J. Wiley & Sons, 2006, doi: http://dx.doi.org/10.1002/0470041048.

RYBIN, O.; WANG, S. Substrate Application of Electrically Enhanced Microwave Metamaterials. Proc. of Int. Conf. on Mathematical Methods in Electromagnetic Theory, 26-28 Aug. 2014, Dnipropetrovsk, Ukraine. IEEE, 2014, p.202-204, doi: http://dx.doi.org/10.1109/MMET.2014.6928697.

MOSALLAEI, H.; SARABANDI, K. Magneto-Dielectrics in Electromagnetics: Concept and Applications. IEEE Trans. Antennas Propag., 2004, v.52, n.6, p.1558-1567, doi: http://dx.doi.org/10.1109/TAP.2004.829413.

BALANIS, C.A. Antenna Theory: Analysis and Design. John Wiley & Sons, 1997.

PUCEL, R.A.; MASSE, D.J. Microstrip propagation on magnetic substrates - Part I: Design theory. IEEE Trans. Microwave Theory Tech., 1972, v.20, n.5, p.304-308, doi: http://dx.doi.org/10.1109/TMTT.1972.1127749.

RYBIN, O. Effective Microwave Magnetic Response of Two-Component Metaferrite. Int. J. Applied Electromagnetics and Mechanics, 2012, v.40, p.185-195.

RYBIN, O. Microwave effective medium theory for two-component magnetic metamaterials. Int. J. Applied Electromagnetics and Mechanics, 2011, v.35, p.93-101.

RYBIN, O.; RAZA, M.; NAWAZ, T.; ABBAS, T. Evaluation of Layer Properties of Effective Parameters of Metallic Rod Metamaterials in GHz Frequencies. AEUE: Int. J. Electronics Communications, 2009, v.63, p.648-652, doi: http://dx.doi.org/10.1016/j.aeue.2008.05.005.

Published

2015-04-25

Issue

Section

Feeder circuits, materials, and measurements