Recent advances in terahertz science at Queen Mary university of London

Authors

  • Rostyslav F. Dubrovka Queen Mary, University of London, United Kingdom https://orcid.org/0000-0001-6900-1819
  • Oleksandr Ju. Sushko Queen Mary, University of London, United Kingdom https://orcid.org/0000-0001-7738-6421
  • T. M. Loftus Queen Mary, University of London, United Kingdom
  • Bin Yang Queen Mary, University of London, United Kingdom
  • K. Shala Queen Mary, University of London, United Kingdom
  • Rob S. Donnan Queen Mary, University of London, United Kingdom

DOI:

https://doi.org/10.1109/ICATT.2013.6650693

Abstract

This article aims to highlight recent activities in THz group at QMUL. These include progress in data processing techniques related to material parameter extraction procedures, characterization of water-based highly absorbing solutions, programming techniques used to facilitate data acquisition and investigations in the field of new coherent THz sources. The implementation and development of quasi-optic THz components is also described here. One of the group’s aims is to establish metrological measures allowing comparison of results obtained using THz-TDS by various groups worldwide.

References

FITCH, M.J.; OSIANDER, R. Terahertz waves for communications and sensing. John Hopkins APL Technical Digest, 2004, v.25, n.4, p.348-355.

BAXTER, J.B.; GUGLIETTA, G.W. Terahertz spectroscopy. Anal Chem., 2011, v.83, p.4342-68, doi: http://dx.doi.org/10.1021/ac200907z.

SIEGEL, PETER H. Terahertz technology in biology and medicine. IEEE Trans. MTT, Oct 2004, v.52, n.10, p.2438-2447, doi: http://dx.doi.org/10.1109/MWSYM.2004.1338880.

CHATTOPADHYAY, G. Technology, capabilities, and performance of low power terahertz sources. IEEE Trans. Terahertz Sci. Tech., Sept. 2011, v.1, n.1, p.33-53, doi: http://dx.doi.org/10.1109/TTHZ.2011.2159561.

SUSHKO, O.; SHALA, K.; DUBROVKA, R.; DONNAN, R. A revised metrology for enhanced accuracy in complex optical constant determination by THz-TDS. J. Opt. Soc. Am. A, 2013, v.30, n.5, p.979-986, doi: http://dx.doi.org/10.1364/JOSAA.30.000979.

PUPEZA, I.; WILK, R.; KOCH, M. Highly accurate optical material parameter determination with THz time-domain spectroscopy. Opt. Express, 2007, v.15, n.7, p.4335-4350, doi: http://dx.doi.org/10.1364/OE.15.004335.

DUVILLARET, L.; GARET, F.; COUTAZ, J.-L. Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy. Appl. Opt., 1999, v.38, n.2, p.409-415, doi: http://dx.doi.org/10.1364/AO.38.000409.

DUVILLARET, L.; BERTIE, J.E.; LAN, Z.D. Infrared intensities of liquids: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(1) at 25 degrees C between 15 000 and 1 cm-1. Appl. Spectrosc., 1996, v.50, n.8, p.1047-1057.

HEYDEN, MATTHIAS; HAVENITH, MARTINA. Combining THz spectroscopy and MD simulations to study protein-hydration coupling. Methods, 2010, v.52, n.1, p.74-83, doi: http://dx.doi.org/10.1016/j.ymeth.2010.05.007.

KITTEL, C. Introduction to Solid State Physics. P.95, table 8.

BLAKEMORE, J.S. Semiconducting and other major properties of gallium arsenide. J. Appl. Phys., 1982, v.53, n.10, R.123, doi: http://dx.doi.org/10.1063/1.331665.

REISER, A.; SCHACHTER, L. Geometric effects on blackbody radiation. Physical Review A, 2013, v.87, p.033801, doi: http://dx.doi.org/10.1103/PhysRevA.87.033801.

HASMAN, E.; KLEINER, V.; DAHAN, N.; GORODETSKI, Y.; FRISCHWASSER, K.; BALIN, I. Manipulation of a thermal emission by use of micro- and nanoscale structures. Proc. of 14th Int. Heat Transfer Conf., 8-13 Aug. 2010, Washington, CA. ASME, 2010, v.134, p.559-573, doi: http://dx.doi.org/10.1115/IHTC14-23379.

Published

2014-02-19