Electrodynamic analysis of nanoscale antennas of millimeter and optical bands

Authors

  • Aleksander M. Lerer Southern Federal University, Russian Federation
  • Oleg S. Labunko Rostov Radiofrequency Center, Russian Federation
  • P. V. Makhno Southern Federal University, Russian Federation
  • Gennadiy P. Sinyavsky Southern Federal University, Russian Federation

DOI:

https://doi.org/10.1109/ICATT.2011.6170781

Keywords:

carbon nanotube, plasmon, optical antenna, complex permittivity, integral equation, ZnO nanocrystal, nanorod, nanovibrator

Abstract

Electrodynamic models and radiophysical properties of carbon nanotubes – vibrators (isolated on the substrate lattices), metallic optical antennas and optical antennas, formed from ZnO nanorods coated with metal films were developed and investigated. The models are based on numerically-analytical solution of integro-differential equations describing the diffraction of electromagnetic waves on impedance and dielectric bodies. Using the integral representations of the kernels of integro-differential equations allowed to overcome the difficulties of solution, associated with the singularity of kernels and to reduce the computation time for an order.

References

KLIMOV, V.V. Nanoplasmonics. Moscow: Physmatlit, 2010.

LERER, A.M.; MAKHNO, V.V.; MAKHNO, P.V. Electrodynamical Analysis of Nanostructures of Millimeter, Optical and X-Ray Bands. Lambert: Academic Publishing, 2011, EAN: 9783843314909.

LERER, A.M.; MAKHNO, V.V.; MAKHNO, P.V.; SHUROV, G.A. The calculation of parameters of nanoantennas – carbon nanotubes. Electromagnetic Waves and Electronic Systems, 2010, v.15, n.2, p.64-67.

LERER, A.M.; MAKHNO, V.V.; MAKHNO, P.V. Calculation of properties of carbon nanotube antennas. Int. J. Microwave and Wireless Technologies, 2010, v.2, n.5, p.457-462.

LERER, A.M. Radiotransmitting properties of carbon nanotube-vibrator, lying at the boundary between dielectrics. Vestnik MU. Series 3, 2010, n.5, p.43-49.

LERER, A.M.; SINYAVSKIY, G.P. Diffraction of electromagnetic waves on the finite grating of carbon nanotubes-vibrators, lying at the boundary between dielectrics. Vestnik MU. Series 3, 2010, n.6, p.48-53.

GOLOVACHEVA, E.V.; LERER, A.M.; PARKHOMENKO, N.G. Diffraction of electromagnetic waves of optical frequency range on metallic nanovibrator. Vestnik MU. Series 3, 2011, n.1, p.6-11.

LERER, A.M. Investigation of properties of planar metallic nanovibrators in optical frequency range. Radiotekhnika i Elektronika, 2011, n.3, p.295-303.

LERER, A.M.; SINYAVSKY, G.P. Diffraction of an Electromagnetic Wave on the Finite Lattice. Moscow University Physics Bulletin, 2010, v.65, n.6, p.476-481.

HIZNYAK, N.G. Integralnie Urovnenia Makroskopicheskoy Elektrodinamiki. Kiev: Naukova Dumka, 1986, 279 p. [in Russian].

http://www.luxpop.com.

VAINSTEIN, L.A. Teoria Difrakcii I Metodi Factorizacii. Moscow: Sovetskoe Radio, 1966, 432 p. [in Russian].

Published

2011-09-25