Fast parameter measurements for antenna-feeder devices
DOI:
https://doi.org/10.1109/ICATT.2011.6170776Keywords:
six-port, multiport waveguide discontinuity, reflection coefficientAbstract
The problem of creating fast virtual oscilloscope of complex reflection coefficient based on the electromagnetic approach using cross-shaped splitter at the measurement transducer is studied. On the basis of the adequacy of the electromagnetic model and the actual design of meter the measurement error of the reflection coefficient of less than 5% and the possibility of measuring the parameters of vibrating objects in free space with an amplitude of at least 0.1 mm in the frequency range up to 1 kHz are obtained.References
FANG, X.-T.; ZHANG, X.-C.; TONG, C.-M. A Novel Miniaturized Micro-Strip Six-Port Junction. Progress In Electromagnetics Research Letters, 2011, v.23, p.129-135.
LI, C.; ZHANG, H.; WANG, P. A novel six-port circuit based on four quadrature hybrids. International Journal of RF and Microwave Computer-Aided Engineering, 2010, v.20, p.128-132, doi: http://dx.doi.org/10.1002/mmce.20410.
MABROUK, K.; DE SOUSA, F.R.; HUYART, B.; NEVEUX, G. Architectural solution for second-order intermodulation intercept point improvement in direct down-conversion receivers. IET Microw. Antennas Propag., 2010, n.4, p.1377-1386, doi: http://dx.doi.org/10.1049/iet-map.2009.0015.
YEE, L.K.; ABBAS, Z.; JUSOH, M.A.; YEOW, Y.K.; MENG, C.E. Determination of Moisture Content in Oil Palm Fruits Using a Five-Port Reflectometer. Sensors, 2011, v.11, p.4073-4085, doi: http://dx.doi.org/10.3390/s110404073.
ENGEN, G.F. The Six-Port Reflectometer: An Alternative Network Analyzer. IEEE Trans. Microwave Theory Tech., 1977, v.25, p.1075-1080, doi: http://dx.doi.org/10.1109/TMTT.1977.1129277.
GANOUCHI, F.M.; BOSISIO, R.G. The Six Port Reflectometer and its Complete Calibration by Four Standard Terminations. IEEE Proc., 1988, v.135, p.285-289.
DROBAKHIN, O.O.; BORULKO, V.F.; KARLOV, V.A. Millimeter apparatus for transmission line and dielectric material measurements by multi-frequency methods. Proc. of Conf. on Precision electromagnetic Measurement Digest, Cat No. 96CH35956, 1996, p.598-599, doi: http://dx.doi.org/10.1109/CPEM.1996.547368.
KARLOV, V.A. Electrodynamical modeling of virtual oscillograph complex coefficient of reflection microwave frequencies. Proc. of 19th Int. Sci. and Tech. Conf. on Modern Television and Radioelectronics, Moscow, 2011, p.267-270.
BARTASHEVSKII, E.L.; KARLOV, V.A. Vector microwave reflectometer based on four-port power divider. Elekronnaya Tekhnika, Ser. 1. Elektronika SVCh, 1989, n.1, p.38-44.
ANDREEV, M.V.; BORULKO, V.F.; DROBAKHIN, O.O.; SALTYKOV, D.Y. Determination of parameters of fractional-rational model using interpolation by continued fraction. Proc. of Int. Conf. on Mathematical Methods in Electromagnetic Theory, Kharkov, 2006, p.264-266, doi: http://dx.doi.org/10.1109/MMET.2006.1689762.
ANDREEV, A.V.; BORULKO, V.F. Determination of parameters of fractional-rational model using method of quasisolution searching. Proc. of Int. Conf. on Mathematical Methods in Electromagnetic Theory, Odessa, 2008, p.389-391, doi: http://dx.doi.org/10.1109/MMET.2008.4581004.
KARLOV, V.A. Virtual oscilloscope of complex reflection coefficient of millimeter wave. Proc. of 3rd Int. Sci. Conf. on Topical Issues of Modern Technology, 2011, Lipetsk, Russia. Lipetsk, 2011, p.31-35.