Visually lossless compression of synthetic aperture radar images


  • N. N. Ponomarenko National Aerospace University (KhAI), Ukraine
  • V. V. Lukin National Aerospace University (KhAI), Ukraine
  • K. O. Egiazarian Tampere University of Technology, Finland



A task of visually lossless but, in fact, lossy compression of synthetic aperture radar (SAR) images corrupted by intensive speckle is considered. A method based on discrete cosine transform (DCT) applied in 8x8 blocks is proposed. The method is adapted to spatial DCT spectrum of speckle and its multiplicative nature. It is shown that the proposed method allows providing compression ratio (CR) of about 3.2…3.5 for simulated and real life SAR images which is sufficiently larger than for image lossless compression techniques.


OLIVER, C.; QUEGAN, S. Understanding Synthetic Aperture Radar Images. SciTech Publishing, 2004.

PONOMARENKO, N.N.; LUKIN, V.V.; ZRIAKHOV, M.S.; KAARNA, A.; ASTOLA, J. Automatic approaches to on-land/on-board filtering and lossy compression of AVIRIS images. Proc. of IGARSS, 7-11 Jul. 2008, Boston, USA. IEEE, 2008, v.3, p.254-257, doi:

AL-SHAYKH, O.K.; MERSEREAU, R.M. Lossy compression of noisy images. IEEE Trans. Image Processing, 1998, v.7, n.12, p.1641-1652, doi:

LUKIN, V.V.; KRIVENKO, S.S.; ZRIAKHOV, M.S.; PONOMARENKO, N.N.; ABRAMOV, S.K.; KAARNA, A.; EGIAZARIAN, K. Lossy compression of images corrupted by mixed Poisson and additive noise. Proc. of LNLA, 19-21 Aug. 2009, Tuusula. IEEE, 2009, p.33-40, doi:

LUKIN, V.V.; ZRIAKHOV, M.S.; PONOMARENKO, N.N.; KRIVENKO, S.S.; ZHENJIANG, MIAO. Lossy compression of images without visible distortions and its applications, Proc. of ICSP, 24-28 Oct. 2010, Beijing, China. IEEE, 2010, p.698-701, doi:

ODEGARD, J.E.; GUO, H.; LANG, M.; BURRUS, C.S.; WELLS, R.O. Wavelet Based SAR Noise Reduction and Ima ge Compression. Proc. of SPIE: Algorithms for Synthetic Aperture Radar Imagery II, Orlando, May 1995, 12 p.

PONOMARENKO, N.; LUKIN, V.; EGIAZARIAN, K.; ASTOLA, J. A method for blind estimation of spatially correlated noise characteristics. Proc. of SPIE Conf. on Image Processing: Algorithms and Systems VII, San Jose, USA. 2010, v.7532, p.12, doi:

PONOMARENKO, N.N.; LUKIN, V.V.; EGIAZARIAN, K.O.; ASTOLA, J.T. DCT Based High Quality Image Compression. Proc. of Scandinavian Conf. on Image Analysis, Springer Series: Lect. Notes in Comp. Sc., 2005, v.3540, p.1177-1185, doi:

WU, X.; MEMON, N.D. Context-based, adaptive, lossless image coding. IEEE Trans. Commun., 1997, v.45, n.4, p.437-444, doi:

WANG, Z.; SIMONCELLI, E.P.; BOVIK, A.C. Multiscale structural similarity for image quality assessment. Proc. of IEEE Asilomar Conf. on Signals, Systems and Computers, 9-12 Nov. 2003. IEEE, 2003, v.2, p.1398-1402, doi: