Thirty years experience in development of adaptive lattice filters theory, techniques and testing in Kharkiv

Authors

DOI:

https://doi.org/10.1109/ICATT.2011.6170713

Keywords:

whitening filter, inverse filter, generalized Levinson’s factorization, adaptive lattice filter, interference protection

Abstract

Common elements of different problems on space-time adaptive processing of Gaussian signal and a place of adaptive lattice filters (ALF) in their solution are discussed. Discussed are the ALF advantages in comparison with other analogous purpose filters; results of their modeling, scaled-down and scaled testing in adaptive systems of clutter protection and meteorological formation spectrum estimation in operating radars; peculiarities of practical realization on the basis of modern digital elemental base.

References

GILL, P.E.; MURRAY, W. (eds.) Numerical Methods for Constrained Optimization. London: Academic Press, 1974, 283 p.

FRIEDLANDER, B. Lattice filters for adaptive processing. Proc. IEEE, 1982, v.70, n.8, p.829-867, doi: http://dx.doi.org/10.1109/PROC.1982.12407.

COWAN, C.F.N.; GRANT, P.M. (eds.) Adaptive Filters. Englewood Cliffs, N.J.: Prentice Hall, 1985, 308 p.

KUNG, S.Y.; WHITEHOUSE, H.J.; KAILATH, T. (eds.) VLSI and Modern Signal Processing. Englewood Cliffs, N.J.: Prentice Hall, 1985, 481 p.

LEKHOVYTSKIY, D.I. Generalized Levinson's algorithm and universal lattice filters. Radiofizika, v.35, n.9-10, p.790-808.

MONZINGO, R.A.; MILLER, T.W. Introduction to Adaptive Arrays. New York: John Wiley & Sons, 1980.

Radio Electronic Systems: Design Basis and Theory, 2nd ed. Moscow: Radiotekhnika, 2007, 512 p. [in Russian, ed. by Ya. D. Shirman].

LEKHOVYTSKIY, D.I.; RYABUKHA, V.P.; ZHUGA, G.A. MTD in pulsed radars: with formulas and pictures. Physical meaning and extrernal properties of operations of optimal Gaussian signal processing against the background of Gaussian clutters. Applied Radio Electronics, 2008, v.7, n.2, p.109-123.

MARPLE Jr., S.L. Digital Spectral Analysis with Applications. Englewood Cliffs, N.J.: Prentice Hall, 1987.

LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; KIRILLOV, I.G.; FLEKSER, P.M. Statistical analysis of "superresolution" methods for noise sources direction finding in antenna arrays with the finite learning sample. Antennas, 2000, n.2, p.23-39.

LEKHOVYTSKY, D.I.; RYABUKHA, V.P.; ZHUGA, G.A. Experimental investigations of MTD systems on the basis of adaptive lattice filters in pulsed radars with batch-to-batch staggering of pulse repetition intervals. Applied Radio Electronics, 2008, v.7, n.1, p.3-16.

ABRAMOVICH, Y.I.; SPENCER, N.K.; JOHNSON, B.A. Band-inverse TVAR covariance matrix estimation for adaptive detection. IEEE Trans. Aero. Elect. Sys., Jan. 2010, v.46, n.1, p.375-396, doi: http://dx.doi.org/10.1109/TAES.2010.5417169.

LEKHOVYTSKIY, D.I.; ABRAMOVICH, Y.I.; ZHUGA, G.A.; RACHKOV, D.S. Band-diagonal regularization of Gaussian interference covariance matrices ML estimates in algorithms of antenna arrays adaptation. Applied Radio Electronics, 2010 , v.9, n.1, p.107-121.

LEKHOVYTSKIY, D.I.; MILOVANOV, S.B.; RAKOV, I.D.; SVERDLOV, B.G. Universal adaptive lattice filters: adaptation for a given root of the estimating correlation matrix. Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, 1992, v.35, n.11-12, p.969-991, doi: http://dx.doi.org/10.1007/BF01046658.

GERSHMAN, A.B. Combined direction finding with the joint use of highresolution direction finders of different types. Radiotekhnika i Elektronika, 1995, n.5, p.918-924.

LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; KIRILLOV, I.G. Kinds of "superresolution" random signals space-time spectrum analyzers on the basis of whitening ALF. Antennas, 2000, n.2, p.40-54.

LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; DZHUS, V.V.; ZHUGA, G.A. Combined direction finders of noise radiation dot sources on the basis of adaptive lattice filters. Applied Radio Electronics, 2006, v.5, n.3, p.306-315.

Published

2011-09-25