# Mathematical models of the radiating and waveguide structures with N-fold periodicity

## DOI:

https://doi.org/10.1109/ICATT.2009.4435187## Keywords:

mathematical model, branched continual fractions, radiating structure, waveguiding structure## Abstract

In present article the results of development of the mathematical models of the wide class of radiating and waveguiding structures of divisible periodicity of constructive parameters are represented.## References

CHAPLIN, A.F. The excitation of heterogeneous periodic impedance structures. *Proc. of VIII Symp. on Waves and Diffraction*, 1981, v.3, p.73-76.

HOBLYK, V.V. The analysis of field above the impedance plane with periodic discrete heterogeneity by Chaplin’s method. Theoretical and experimental methods for antennas and SHF devices investigations. *Proc. of Lvov Polytechnic Institute*, 1984, n.1874, p.27-70.

HOBLYK, V.V.; CHAPLIN, A.F. About one summarizing of modulated impedance structures problems solution. *Proc. of Lvov Polytechnic Institute*, 1986, n.813.

HOBLYK, V.V.; CHAPLIN, A.F. About one summarizing of modulated impedance structures problems solution. *Proc. of Lvov Polytechnic Institute*, 1986, n.813.

HOBLYK, V.V. Thesis for candidate degree of physics and mathematics sciences. Kharkiv: State University, 1986, 210 p.

HOBLYK, V.V. The excitation of modulated dielectric plate. The theory and design of semiconductors and radio electronic devices. *Proc. of Lvov Polytechnic Institute*, 1990, n.245, p.20-23.

HOBLYK, V.V. About the theory of equidistant arrays with periodic parameters. The theory and design of semiconductors and radio electronic devices. *Proc. of Lviv Polytechnic State University*, 1998, n.343, p.49-53.

HOBLYK, V.V.; HOBLYK, N.M. Branched continual fractions in the problems of wave diffraction. *Radioelectronics and Telecommunications*, 1998, n.352, p.150-153.

HOBLYK, V.V.; HOBLYK, N.N. The modeling antenna arrays by branched continual fractions. *Proc. of V Int. Conf. on Antenna Theory and Techniques*, ICATT, 24-27 May 2005, Kyiv, Ukraine. IEEE, 2005, p.234-237, DOI: http://dx.doi.org/10.1109/ICATT.2005.1496935.

HOBLYK, V.V.; PAVLYSH, V.А.; NYCHAI, I.V. Modelling of photonic crystals by branched continual fraction. *Radioelectronics and Telecommunications*, 2007, n.595, p.78-86.

HOBLYK, V.V.; NYCHAI, I.V. Infocommunicational properties of periodically nonuniform dielectric plate. *Electronics*, 2008, n.619, p.29-36.

HOBLYK, V.V.; HOBLYK, N.N. About solution of the Fredholm integrated equation in a branched continual fraction type. *Proc. of Int. School-Seminar on Continued Fraction, their Generalization and Application*, Uzhhorod National University, 2002, p.16-18.

SCOROBOGAT’KO, V.Y. *The Theory of Branched Continual Fractions and Its Application in the Calculus Mathematics*. Moscow: Nauka, 1983, 312 p. [in Russian].

BODNAR, D.I. *The Branched Continual Fractions*. Kiev: Nauk. Dumka, 1986, 176 p.