Matrix theory of dissipative antenna arrays

Authors

DOI:

https://doi.org/10.1109/ICATT.2007.4425122

Keywords:

antenna array, Joule loss, impedance matrix, multiport, phased array parameters, scattering matrix

Abstract

A theory of a phased antenna array with lossy radiating elements is elaborated. The theory is based on representation of a radiating system as the equivalent multi-port linking amplitudes of traveling waves in transmission lines with amplitudes of spherical waves in free space. Relations for calculation of blocks of a scattering matrix, that defines parameters of this multiport, are obtained under assumption that initial parameters of the radiating system the impedance matrix and partial radiation patterns (RP) - are known. A procedure for calculation of these parameters is described. It is based on the solution, with the moments method, of the electromagnetic boundary problem of the antenna array excitation at the alternating excitation of its inputs. The given relations allow effectively calculating parameters of transmitting and receiving phased antenna arrays.

References

WONG, K.L.; WU, J.-Y. Bandwidth enhancement of circularly-polarised microstrip antenna using chip-resistor loading. Electron. Lett., 1997, v.33, n.21, p.1749-1751, doi: http://dx.doi.org/10.1049/el:19971204.

HF vertically polarized broadband shipboard antenna MPS-IOM. Antenna Product Corp. Catalog. Texas: Mineral Wells, 2004, 92 p.

POPOVIĆ, B.D. Synthesis of parallel cylindrical antennas with minimal coupling. Glas CCCXXI de l'Académie Serbe des Sci. et des Arts, 1980, Classe des Sci. tech. No 16, 55-66.

LEAT, C.J. Resistively loaded helical antennas for ground-penetrating radar. IEE Proc. Microwaves, Antennas Propag., 2002, v.149, n.4, p.204-210, doi: http://dx.doi.org/10.1049/ip-map:20020389.

DANIELS, D.J. Microwave techniques for NDE: antenna and front end design. IEE Colloq. on Radar and Microwave Tech. for Non-Destructive Eval., 20 Nov 1995, London. IET, 195, p.311-313, doi: http://dx.doi.org/10.1049/ic:19951317.

MONTOYA, T.P.; SMITH, G.S. Land mine detection using a ground-penetrating radar based on resistively loaded Vee dipoles. IEEE Trans. Antennas Propag., Dec. 1999, v.47, n.12, p.1795-1806, doi: http://dx.doi.org/10.1109/8.817655.

FEAR, E.C.; MEANEY, P.M.; STUCHLY, M.A. Microwaves for breast cancer detection? IEEE Potentials, Feb./Mar. 2003, v.22, n.1, p.12-18, doi: http://dx.doi.org/10.1109/MP.2003.1180933.

CLAASSEN, D.M.; BANSAL, R.; MASON, I.M.; HARGREAVES, J.E. Resistively loaded insulated antennas for narrow borehole radar. Proc. of Int. Geosci. And Rem. Sens. Symp. on Quantitative Remote Sensing for Science and Applications, IGARSS'95, 10-14 Jul1995, Firenze, Italy. IEEE, 1995, v.3, p.1711-1713, doi: http://dx.doi.org/10.1109/IGARSS.1995.524004.

SAZONOV, D.M. Base of matrix theory of antenna arrays. The Applied Electrodynamics, 1983, n.6, p.111-162.

LUCHANINOV, A.I.; TOKARSKII, P.L. Determination of the Parameters of a System of Radiators for a Matrix Description of an Antenna Array. Radioel. and Commun. Syst., 1983, v.26, n.8, p.100-102.

TOKARSKII, P.L. The Scattering Matrix of an Antenna Array with Joule Losses in the Radiators. Radioel. and Commun. Syst., 1984, v.27, n.2, p.80-82.

TOKARSKIY, P.L. Mutual Coupling in a System of Radiators with Joule Losses. Soviet J. Commun. Tech. & Electron., 1987, n.3, p.9-14.

TOKARSKII, P.L. Matrix Model of the Dissipative Antenna Array for the Calculation of its Polarization Characteristics. Radioel. and Commun. Syst., 1996, v.39, n.10, p.10-18, http://radio.kpi.ua/article/view/S002134701996100020.

TOKARSKY, P.L. A Theory of Radiating Systems with Joule and Polarization Losses. Thesis for the Doctor of Science degree in Phys. & Math., Kharkiv Nat. Univ. of Radio Electron. Kharkiv, 2005.

SWANSON, D.G.; HOEFER, W.J.R. Microwave Circuit Modeling Using Electromagnetic Field Simulation. Boston: Artech House, 2003.

CHANG, KAI. Encyclopedia of RF and Microwave Engineering. New York: Wiley, 2005, doi: http://dx.doi.org/10.1002/0471654507.

BALANIS C.A. Antenna Theory, Analysis and Design, 2nd ed., New York: Wiley, 1997.

IEEE Standard definition of the terms for antennas, 1993, IEEE Std. 145-1993.

KRAUS, J.D. Antennas, 2nd ed. New Delhi: TATA McGrow Hill, 1997.

TOKARSKY, P.L. Wave Matrices in the Analysis of Noises of Dissipative Antenna Arrays. Telecommun. Radio Eng., 2002, v.57, n.6-7, p.47-50, doi: http://dx.doi.org/10.1615/TelecomRadEng.v57.i6-7.30.

TOKARSKII, P.L.; RYBALKO, A.M.; SINEPUP, A.V. Optimization of the Power Parameters of Antenna Arrays with Suppressed Level of CrossPolarized Radiation. Radioel. Commun. Syst., 2000, v.43, n.4, p.11-19, http://radio.kpi.ua/article/view/S0021347000040026.

TOKARSKY, P. Modeling Dipole Antenna Arrays over an Imperfect Ground. Proc. of Int. Conf. on Modern Probl. Telecom., Computer Sci. & Eng. Training, TCSET'2000, Lviv-Slavsko. 2000, p.67-68.

Published

2007-09-22