Blind estimation of target parameters in the presence of unknown Gaussian space-time interference


  • A. A. Rodionov Institute of Applied Physics of the Russian Academy of Sciences, Russian Federation
  • V. I. Turchin Institute of Applied Physics of the Russian Academy of Sciences, Russian Federation



blind parametric estimation, maximum likelihood, adaptive space-time processing


Parametric estimation technique for deterministic space-time signals on the output of linear sensor array in the presence of Gaussian noise with unknown second moment is considered. For this scenario, the derived maximum-likelihood statistics becomes invariant with respect to the second moment of noise and can be termed as blind estimator. Proposed technique was experimentally examined via estimation of track parameters for moving scatterer. It was shown for numerous records that the blind and model-based estimation techniques have close performance, however, blind estimator does not require preliminary investigation of interference and designing of its statistical model.


MONSINGO, R.A.; MILLER, T.W. Introduction to Adaptive Arrays. N.Y.: Wiley, 1980.

MCDONALD, K.F.; BLUM, R.S. Exact performance of STAP algorithms with mismatched steering and clutter statistics. IEEE Trans. Signal Processing, Oct. 2000, v.48, n.10, p.2750-2763, doi:

KAY, S. Adaptive detection for unknown noise power spectral densities. IEEE Trans. Signal Processing, Jan. 1999, v.47, n.1, p.10-21, doi:

PESAVENTO, M.; GERSHMAN, A.B. Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise. IEEE Trans. Signal Processing, Jul. 2001, v.49, n.7, p.1310-1324, doi:

YARDIMCI, Y.; CETIN, A.E.; CADZOW, J.A. Robust direction-of-arrival estimation in non-Gaussian noise. IEEE Trans. Signal Processing, May 1998, v.46, n.5, p.1443-1451, doi:

RODIONOV, A.A.; TURCHIN, V.I. An adaptive parametric estimation of space-time deterministic signal against unknown Gaussian noise background. Proc. of IV Int. Conf. on Antenna Theory and Techniques, ICATT'2003, 9-12 Sept. 2003, Sevastopol, Ukraine. IEEE, 2003, v.1, p.414-416, doi:

AGRAWAL, M.; PRASAD, S. A modified likelihood function approach to DOA estimation in the presence of unknown spatially correlated Gaussian noise using a uniform linear array. IEEE Trans. Signal Processing, Oct. 2000, v.48, n.10, p.2743-2749, doi:

KAY, S.M. Foundamentals of Statistical Signal Processing. Vol. 1: Estimation Theory. Prentice-Hall PTR, 1998.

CARLSON, B.D. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst., July 1988, v.24, n.4, p.397-401, doi:

GORSKII, S.M.; ZVEREV, V.A.; MATVEEV, A.L.; MITYUGOV, V.V. Incoherent accumulation of acoustic diffraction signals. Acoustical Physics, 1995, v.41, n.2, p.190-198.

ZVEREV, V.A.; MATVEEV, A.L.; MITYUGOV, V.V. Matched filtering of acoustic diffraction signals for incoherent accumulation with a vertical antenna. Acoustical Physics, 1995, v.41, n.4, p.518-522.

ZVEREV, V.A.; KOROTIN, P.I.; MATVEEV, A.L.; MITYUGOV, V.V.; ORLOV, D.A.; SATIN, B.M.; TURCHIN, V.I. Experimental studies of sound diffraction by moving inhomogeneities under shallow-water conditions. Acoustical Physics, 2001, v.47, n.2, p.184-193, doi:

MATVEEV, A.L.; ORLOV, D.A.; RODIONOV, A.A.; SALIN, B.M.; TURCHIN, V.I. Comparative analysis of tomographic methods for the observation of inhomogeneities in a shallow sea. Acoustical Physics, 2005, v.51, n.2, p.218-229, doi:





Remote sensing and hydroacoustic antennas