Physical aspects of mutual coupling in finite broadband tapered slot (Vivaldi) arrays

Authors

  • Anatoliy O. Boryssenko A&E Partnership, United States
  • D. H. Schaubert University of Massachusetts, United States

DOI:

https://doi.org/10.1109/ICATT.2005.1496887

Keywords:

tapered slot antenna, Vivaldi antenna, antenna array, infinite array, finite array, mutual coupling, truncation effect

Abstract

A notch antenna, or Vivaldi antennas, or also known as tapered slot antenna (TSA) is widely used as a single radiator but mostly as an array element in transmitting, receiving and combined arrays, focal-plane imaging and other system-oriented broadband applications. Full-wave analysis of such arrays is required that is a big numerical challenge because of large electrical size for such typical problems. Only infinite arrays or very small arrays are treatable with available EM tools. However, all elements of moderate in size arrays can be impacted by edge truncation because of strong mutual coupling within TSA array environment. Thus, accurate performance prediction and design can be achieved through (1) enhancing EM simulation numerical tools and (2) exploring underlying physical phenomenology of array behaviour. We follow both the above ways. This work demonstrates some basic physics related to mutual coupling is small finite arrays.

References

LEWIS, L.R.; FASSET, M.; HUNT, J. A broadside stripline array element. IEEE Antenna Propagat. Soc. Int. Symp. Dig., 1974, v.12, p.335-337, doi: http://dx.doi.org/10.1109/APS.1974.1147206.

SCHAUBERT, D.H.; KOLLBERG, E.L.; KORZENIOWSKI, T.; THUNGREN, T.; JOHANSSON, JOAKIM; YNGVESSON, K.S. Endfire tapered slot antennas on dielectric substrate. IEEE Trans. Antennas Propagat., 1985, v.33, n.12, p.1392-1400, doi: http://dx.doi.org/10.1109/TAP.1985.1143542.

SCHAUBERT, D.H. Scanning characteristics of stripline-fed tapered slot antennas on dielectric substrates. Proc. of the 1993 Antenna Applications Symp., Monticello, IL, Sept. 1993.

KRAGALOTT, M.; PICKLES, W.R. KLUSKENS, M.S. Design of a 5:1 bandwidth stripline notch array from FDTD analysis. IEEE Trans. Antennas Propag., Nov. 2000, v.48, n.11, p.1733-1741, doi: http://dx.doi.org/10.1109/8.900231.

SCHUNEMAN, N.; IRION, J.; HODGES, R. Decade bandwidth tapered notch antenna element. Proc. of 2001 Antenna Applications Symp., 2001, Monticello, IL, p.280-294.

HOLTER, H.; CHIO, TAN-HUAT; SCHAUBERT, D.H. Experimental results of 144-element dual-polarized endfire tapered-slot phased arrays. IEEE Trans. Ant. Propag., Nov. 2000, v.48, n.11, p.1707-1718, doi: http://dx.doi.org/10.1109/8.900228.

LEE, RICHARD Q. Notch Antennas. NASA Report, TM-2004-213057, 2004, 30 p. doi: http://dx.doi.org/10.1002/0471654507.eme297.

SCHAUBERT, D.H.; BORYSSENKO, A.O.; VAN ARDENNE, A.; DE VAATE, J.G.B.; CRAEYE, C. Square kilometer array (SKA) antenna. Proc. of IEEE Int Symp. on Phased Array Systems and Technology, 14-17 Oct. 2003, Bosto. IEEE, 2003, p.351-358, doi: http://dx.doi.org/10.1109/PAST.2003.1257007.

BORYSSENKO, A.O.; SCHAUBERT, D.H. Some Lessons Learned About Truncation Effect in Finite Vivaldi Arrays. Proc. of the Antenna Applications Symp., Monticello, IL, 2003, p.327-354.

BORYSSENKO, A.O.; SCHAUBERT, D.H. UMass EM Solver. Focal Plane for Radio Astronomy Workshop, ASTRON, Dwingloo, Netherlands, 2004.

BORYSSENKO, A.O.; SCHAUBERT, D.H.; CRAEYE, C. A wave-based model for mutual coupling and truncation in finite tapered-slot phased arrays. IEEE Antennas and Propagation Society Int. Symp. Dig., 22-27 June 2003, Columbus, OH, USA. IEEE, 2003, v.4, p.11-14, doi: http://dx.doi.org/10.1109/APS.2003.1220108.

Published

2005-06-05