Fiber-optic technology for antenna signal transmission and distribution: present state and perspectives
DOI:
https://doi.org/10.1109/ICATT.1999.1236102Abstract
This paper reflects the state-of-the-art of a new and rapidly growing field [1], dealing with fiber-optic systems for antenna signal transmission. The two principal configurations of fiber-optic links with intensity modulation and direct photodetection (IMDD) are analyzed, using direct (DM) and external modulation (EM) of optical carrier by antenna signals. The basic system parameters of both configurations are compared: frequency bandwidth, insertion loss of RF signals, noise performance, linearity and dynamic range. The principal problems are formulated, which restrict wide applications of fiber-optic systems for antenna signal transmission in optically based antennas in radar and communication electronic complexes. The modifications of fundamental IMDD fiber link schemes are considered, providing successful solution of mentioned problems. Examples of practical IMDD fiber link applications are discussed.References
Bratchikov, A.N. Optical fibers and antennas. (Invited paper). Proc. 10-th Int. Symp. on Antennas, Nice, France, p. 275-289, 1998.
Voskresensky, D.I.; Grinev, A.Yu.; Voronin, E.N. Electrooptical Phased Arrays. New-York: Springer Verlag, 1989.
Forrest, J.R.; Richards, F.P.; Salles A.A.; Varmish, P. Optical fiber networks for signal dis-tribution and control in phased array radars. Proc. of Int. Conf. RADAR’82, No. 216, p. 408-412. IEE, 1982.
Seeds, A. Optical transmission of microwaves. The Review of Radio Science, London, UK: Oxford Univ. Press, 1996 [ed. by W. Stone], p. 325-360.
Bratchikov, A.N. Fiber-ptic systems for phased array antennas. Russian J. on Advances of Modern Radio Electronics, 1997, No. 7, p. 3-15.
Zmuda, H.; Toughlian, E.N. Photonic Aspects of Modern Radar. Norwood, MA: Artech House, 1994.
Riza, N.A. (ed.). Selected Papers on Photonic Control Systems for Phased Array Antennas (SPIE Milestone Series). Bellingham, WA: SPIE, 1997.
Cox, C.; et al. Techniques and performance of intensity-modulation direct-detection analog optical links. IEEE Trans. Microwave Theory Tech., Aug. 1997, Vol. 45, p. 1375-1383.
Daryoush, A.S.; et al. Interfaces for high speed fiber-optic links: analysis and experiment. IEEE Trans. Microwave Theory Tech., Dec. 1991, Vol. 39, p. 2031-2044.
Bratchikov, A.N.; Glukhov, I.P. Interferentional fiber links for microwave signal transmission. XXIV Gen. Assembly, Int. Union Radio Sci., Kyoto, Japan, Aug, 1993.
Goldberg, L.; et al. 35 GHz microwave signal generation with injection-locked laser diodes. Electronic Letters, 1985, Vol. 21, No. 18, p. 814-815.
Chang, K.; et al. Microwave generation using sidebend locked lasers. Proc. SPIE, 1987, Vol. 789, p. 54-59.
Peterman, K. Laser Diode Modulation and Noise. Norwood, MA: Kluwer, 1988.
Fan, Z.F.; Dagenais, M. Optical generation of a Megaherz-linewidth microwave signal usung semiconductor lasers and a discriminator-aided phased-locked loop. IEEE Trans. Microwave Theory Tech., Aug. 1997, Vol. 45, p. 1296-1300.
Kimura, T. Coherent optical fiber transmission. J. Lightwave Technol., Apr. 1987, Vol. LT-5, p. 414-428.
Raven, R.S. Requirements for master oscillators for coherent radar. Proc. IEEE, Feb. 1966, Vol. 54, p. 237-243.
Tsang, W.T. (ed.). Semiconductor Injection Lasers (Lightwave Communication Technology Series, Vol. 22). Orlando, FL: Academic Press, Inc., 1985.
Wake, D.; Lima, C.R.; Davies, P.A. Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser. IEEE Trans. Microwave Theory Tech., Sept. 1995, Vol. 43, p. 2270-2276.
Sejka, M.; et al. Distributed feedback Er3+-doped fiber laser. Electron. Lett., 1995, Vol. 31, p. 1445-1446.
Loh, W.H.; Laming, R.I. 1.55 μm phase shifted distributed feedback fiber laser. Electron. Lett., 1995, Vol. 31, p. 1440-1442.
Bratchikov, A.N.; Sheremeta, A.P. Optical amplifiers on the basis of Er-doped fibers: pre-sent state. Modeling, Measurement & Control. A.: AMSE Press, Tassin-la-Demi-Lune, France, 1994, Vol. 54, No. 3, p. 1-25.
Skolnik, M.I. (ed.). Radar Handbook. New York: McGraw-Hill, 1990.
Kimura T.; et al. New UV-curable primary coating material for optical fiber. Electron. Lett., 1984, Vol. 20, p. 201-202.
Shah, N.; Shadaram, M. Phase stabilization of reference sig-nals in analogous fiber optic links. Electron. Lett., 1997, Vol. 33, p. 1164-1165.
Bratchikov, A.N.; Garkusha, S.A.; Sadekov, T.A. Phase stabilized fiber channel for UHF signal distribution based on an extended optical filter. Photonics and Optoelectronics, 1997, Vol. 4, No. 2, p. 79-83.
Daryoush, A.S.; et al. High-speed fiber-optic links for distribution of satellite traffic. IEEE Trans. Microwave Theory Tech., May 1990, Vol. 38, p. 510-517.
Way, W.; Wolff, R. A 1.3 μm 35 km fiber optic microwave multicarrier transmission system for satellite Earth stations. J. Lightmave Technol., Sep. 1987, Vol. 35, p. 1325-1332.
Bowers, J.E.; et al. Long distance fiber-optic transmission of C-band Microwave signals to and from a satellite antenna. J. Lightwave Technol., Dec. 1987, Vol. LT-5, p. 1733-1741.
Roman, J.E.; et al. Photonic remoting of an SPQ-9B ADM ultra-high dynamic range radar. Proc. of IEEE Radar Conf., Dallas, TX, 1998.
Roman, J.E.; et al., Photonic remoting of the receiver of an ultra-high dynamic range radar. IEEE Int. Microwave.
Daryoush, P.R. Optical technology for space-craft antennas. Proc. SPIE, 1987, Vol. 840, p. 169-174.
Toba, H.; et al. 16 channel optical FDM distribu-tion/transmission experiment uyilizing Er3+-doped fiber amplifier. Electron. Lett., Jul. 1989, Vol. 25, p. 895-897.
Yamada, M.; et al. Broadband and gain-flattened amplifier composed of a 1.55 μm-band and a 1.58 μm-band Er3+-doped fibre amplifier in a parallel configuration. Electron. Lett., April 1997, Vol. 33, No. 8, p. 710-711.